Banner

Polyurethane Grouting Projects

By applying unique solutions to increase the safety and longevity of our environment.

Spillway Bridge Grouting

The Job

This spillway bridge grouting project is located in Toano, Virginia. Toano is between Williamsburg and Richmond. Two DOT-maintained bridges crossing two privately owned dam spillways had to be closed because of extensive undermining of the spillways.

The undermining was allowing nearly all of the flow to happen below the spillway slabs. This caused large sinkholes to form adjacent to and under the roadway pavement. It also led to some settlement of the spillway slabs.

The Challenge

There was very little room to work–just under 4′ of clearance below the bridge beams. Also, the velocity of the water through the voids below the structure was quite high.

The Solution

CJGeo proposed a combination of plural component polyurethane grouting to address the water flows and voids, and hydrophobic chemical grout placed directly into cracks. A single CJGeo grouting crew was able to complete the repairs in a day (roughly 2500sqft of work, and approximately 4500lbs of CJGrout 35NHV61 polyurethane, plus 30 gallons of hydrophobic chemical grout). Dye testing during and after the grouting work confirmed that no more leaks were present under or around the spillway structures.

Speak With An Expert

Facing a similar challenge to this spillway bridge grouting project by CJGeo? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Bridge Approach Ground Improvement

The Job

This bridge approach ground improvement project by CJGeo is located in Richmond, Virginia. With multiple S curves and merges, I-195 in Richmond, Virginia is one of the most accident prone sections of interstate in Central Virginia. Significant settlement of multiple approach and departure slabs at various bridges didn’t make things any better. Improving the ride quality by addressing up to 6 inches of settlement was a critical part of a 2022 safety improvement plan.

The Challenge

Extensive settlement over the years had caused the pavement to become distressed. This was addressed over time with extensive patching of the pavement slabs. With no reasonable detour routes, shutting down traffic to facilitate repairs was not an option.

The Solution

While the original project designed required lifting all of the settled pavement, this would have been nearly impossible, given the extensive patching (including full depth filling of expansion joints with repair mortar).

CJGeo worked with the general contractor and VDOT to revise the repair plan to a combination of compaction grouting of the underlying soils, coupled with an asphalt overlay of the approach and departure slabs to restore the ride.

Polyurethane compaction grouting was performed to a depth of up to 25′ below the pavement surface. This was to consolidate poorly controlled backfill material, at two approaches (9 lanes total) and three departures (9 lanes total). Cutoff criteria was 0.05 inches of lift at each point/stage.

Milling and paving for a 30′ taper to provides a smooth transition and ride.

Speak With An Expert

Facing a similar challenge to this bridge approach ground improvement project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Hotel Basement Water Intrusion Grouting

The Job

This basement water intrusion grouting project was at a hotel in Baltimore, Maryland. It had a continuously wet floor in the basement utility room. Water was oozing out from under the power feed bank housekeeping slab. The housekeeping slab sits directly on top of the floor slab. There were two presumed point sources:

  • the unsealed joint between the floor and the wall,
  • and the power feed conduit wall penetrations.

The pit where the power conduits came through the wall and turned up into the power feed cabinets was 18″ deep, and always full of water.

The Challenge

Extensive exterior drainage work did not work. It presumed that surface water was flowing down the outside face of the basement wall. Then, through the unsealed floor:wall joint and/or into unsealed joints in the conduits and then through the conduit penetrations. The exterior drainage improvements re-waterproofed approximately 500sqft of wall. They slowed, but did not completely stop the water intrusion.

A forensic engineer overseeing the project reached out to CJGeo about performing chemical grouting inside of the utility room to underseal the floor, and to seal the conduit penetrations.

The Solution

CJGeo proposed chemical grouting utilizing a low viscosity hydrophobic prepolymer chemical grout.

Fibrous material soaked in grout was placed into the utility conduit openings to seal them against water intrusion. The grout injected through the floor extruded up through the joint between the wall and floor, and also through various cracks in the floor.

Upon completion of the basement water intrusion grouting by CJGeo, the conduit pit was dry, and there are no longer any leaks.

Speak With An Expert

Facing a similar challenge to this basement water intrusion grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Dollar Store Floor Void Filling

The Job

This floor void filling project is located about three hours west of Richmond, Virginia. A commercial contractor was performing a full gut renovation of a dollar store in a strip center. The building was approximately 30 years ago, and there were no signs of floor slab failure or settlement.

The Challenge

While cutting through the floor to install utilities, a 3″ void was discovered below the floor. Exploratory coring determined that voids ranged from 0.5 to 4″ throughout approximately 11,000 square feet of the space. The front of the building is at grade, but the rear of the building has an approximately 7′ tall CMU stem wall, which was backfilled with common borrow during original construction.

The Solution

The general contractor reached out to the structural engineer to notify them of the problem. The structural engineer then reached out to the geotechnical engineering, who recommended polyurethane grouting as the best way to fill voids below a floor. The geotechnical engineering is familiar with polyurethane grouting from working with CJGeo on similar repairs in the past. They know that polyurethane grouting:

  • is very clean and fast, so is unlikely to slow progress
  • is very lightweight, so is least likely of all grouts to cause additional settlement
  • effectively cures instantly, allowing immediate resumption of activities in the area

CJGeo mobilized two geotechnical polyurethane grouting crews to the site and filled the voids over a period of two days. It took about 7,000 pounds of CJGrout 20SDB through approximately 500, 5/8″ holes to completely fill the voids. Cut-off criteria was cross-hole communication. The work was performed without disruption to the renovation activities.

Speak With An Expert

Facing a similar challenge to this floor void filling project by CJGeo? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

25MGD Sinkhole Leak Grouting

The Job

An underground minerals mine started to lose up to 8VF per day of mine due to water infiltration. Investigation of an adjacent stream uncovered multiple sinkholes which had opened up where the stream crossed a fault. Two sinkholes were adjacent to bridge abutments of a public road, which served as the sole access for multiple homes and farms.

The Challenge

Mine personnel started to self-perform chemical grout in some of the sinkholes. Due to the slow rate of grout installation relative to the water flow, the self-performed grouting was unsuccessful.

Due to endangered fish habitats within the stream, cementitious grouts weren’t allowed, and any chemical grouts needed to be certified for potable water use.

The Solution

CJGeo mobilized two polyurethane grouting crews in the third week of the Covid-19 pandemic to the site. To facilitate safe access to the site, all grouting was performed from aerial platforms reaching out over the work area.

During the grouting process, multiple additional sinkholes opened up; CJGeo would seal one sinkhole, and an adjacent soil filled feature would blow out. Super sacs of aggregate were dropped in the sinkhole throats to fill the bulk of voids, and then polyurethane grouting was performed below the super sacs.

Using nearly 50,000 pounds of CJGrout 35NHV61, CJGeo was able to slow the leaks to the point where no additional sinkholes formed, and the mine’s pumps were able to dewater the facility.

Speak With An Expert

Facing a similar challenge to this project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Fire Station Floor Lifting

The Job

This fire station floor lifting project is located about an hour east of Richmond, Virginia. The concrete slab on the grade floor inside of a fire station on the North Neck of Virginia settled up to two inches. As part of the investigation into the cause, an engineer discovered voids up to 8″ below the slab and multiple broken sanitary sewer pipes below the floor.

The affected areas needing slab foundation repair included a dayroom, kitchen & meeting hall.

The Challenge

In order to minimize disruption to the fire station’s operations, the proposed repair had to be quick, clean, and minimize uncertainty associated with the plumbing repair slab cuts.

The Solution

CJGeo performed ground improvement grouting of the underlying soils to 5′ below-grade utilizing plural component polyurethane compaction grouting, with CJGrout 35NHV. During the compaction grouting process (sometimes called structural polymer grouting), the CJGrout 35NHV lifted the floor back into place.

Because polyurethane grouts cure very quickly, the floor was repaired the day before the plumbing work was scheduled. This allowed the plumbers a stable work surface and eliminated the risk of stuck saws or sudden collapse of the floor during floor sawing for plumbing access.

Grouting sufficiency was verified by using pre & post-grouting DCP tests.

Speak With An Expert

Facing a similar challenge to this fire station floor lifting project by CJGeo? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

14′ CMP Repair

The Job

During a real estate transaction, civil engineers walked a 1400LF run of 14′ diameter multiple tunnels running underneath a strip center in Asheville, NC.

A previous inspection had indicated impending section loss of the pipe due to corrosion and had recommended grouting of incidental voids, but no work had been performed at that time.

The pipe, which had up to 20′ of cover, bypasses a large stream and runs under 200LF of building footprint, the main entrance roadway, two out-parcels, and ties into an NCDOT box culvert to discharge.

The Challenge

Significant debris was present in the pipe, and access was exceptionally difficult. Because dewatering was not practical, all work proposed had to be performed underflow.

The Solution

CJGeo proposed polyurethane backgrouting using plural component CJGrout material, specifically CJGrout 35NHV61.

CJGrout 35NHV61 is a hydro insensitive, moderate mobility grout designed for backgrouting in wet environments, and is certified for potable water contact.

Despite a bear wandering into the pipe during repairs, CJGeo crews successfully backgrouted the pipe to address piping and erosion outside of the structure over a period of two weeks. More than 40,000 pounds of CJGrout 35NHV61 were needed for this 14′ CMP repair project.

Speak With An Expert

Facing a similar challenge to this project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Corporate HQ Stabilization

The Job

Starting immediately after construction was completed, the slab on the grade floor within the cafeteria, loading dock, and kitchen at a corporate headquarters building in Pittsburgh, Pennsylvania settled. Over the course of 12 years, the owner had four different grouting companies attempt to address the problem. Lime slurry injection below the slab was disruptive, and settlement always resumed shortly thereafter.

Compaction grouting was performed in one area but was so disruptive that despite the fact that it was the only method where settlement didn’t resume, the owner kicked the contractor off the site after nearly four months of not having access to their executive dining room.

The Challenge

Settlement progressed over time to be as much as four inches, affecting nearly 20,000 square feet of floor. A general contractor retained by the owner reached out to CJGeo about performing low-impact grouting to address the settlement.

Because settlement affected the entire kitchen, food prep, serving and majority of the dining areas, repairs had to be facilitated continued use of the facility. Additionally, due to the 24-hour staffing of the facility, the noise had to be limited, and there was zero tolerance for dust.

Video inspection of the extensive gravity sanitary and floor drains below the floor revealed six defects, including a 2″ offset in a sanitary drain line for a 6 stall restroom.

The Solution

CJGeo performed 17 DCP tests to determine the depth of uncontrolled fill, which was the presumed cause of settlement. DCP testing showed pockets of WOH fill down to 35′ below the finish floor, and voids ranging from 2″ to 18″ immediately below the floor.

Over the course of 7 nights onsite, CJGeo crews installed 12,000 pounds of CJGrout 20SDB into voids immediately below the floor, and 53,000 pounds of CJGrout 35NHV61 for polyurethane compaction grouting. Compaction grouting was performed up to 35′ deep, but to an average depth of 15′ over the entire area.

All work was completed off-hours. As soon as the kitchen shut down for the evening, CJGeo crews swung into action, grouting through the night until wrapping up in time for the food prep crews to get ready for breakfast at 0500.

To facilitate grouting under four walk-in freezers and refrigerators, over the course of a 24-hour shift, all cold contents were moved to reefer trailers, CJGeo grouted to 30′ under the freezers and refrigerators, which were then immediately turned back on, and then refilled.

Through careful coordination with multiple operational divisions for the owner, general contractor, flooring restoration contractors, plumbers, and remediation contractors, CJGeo successfully completed the project under budget and on time.

Speak With An Expert

Facing a similar challenge to this project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.


Sewer Collapse Sinkhole Repair

The Job

This sewer collapse sinkhole repair project is located in central Virginia. When the operators of a tire and auto shop noticed a sinkhole developing next to their building. They weren’t sure what to do. After an employee crawled into the hole and discovered that he could stand up underneath their building, the owner reached out to the city. City crews determined that a 20″ VCP combined sewer & storm pipe had collapsed under the structure, roughly 25′ below grade.

The Challenge

An on-call contractor for the city installed a new manhole and rerouted the pipe around the building. However, addressing the sinkhole was out of their businesses’ scope. The project manager reached out to CJGeo, who visited the site and recommended DCP testing to better quantify the extent of the problem.

The Solution

DCP testing showed that outside of the large hole on the surface, there was little deep disturbance. Working with the city’s consulting engineer, CJGeo developed a grouting plan to install two different CJGrouts. 20SDB in the bulk voids near the surface. And 35NHV61 for soil grouting to address voids within the underlying ground near the failed sewer line.

While onsite for just 6 hours, a CJGeo crew completed the work with zero disruption to the businesses’ operations.

Speak With An Expert

Facing a similar challenge to this sewer collapse sinkhole repair project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Coal Pier Sinkhole Grouting

The Job

This pier sinkhole grouting project by CJGeo is located at the mouth of the Elizabeth River, off the Chesapeake Bay. With an annual throughput capacity of 48 million tons, Norfolk Southern’s Pier 6 at Lamberts Point in Norfolk, Virginia is one of the largest coal trans-loading facilities in the world. As an around-the-clock facility built around precision logistics, there’s little tolerance for disruption or downtime.

The Challenge

When two sinkholes opened up at the end of Pier 6 adjacent to the bulkhead, railroad personnel reached out to an onsite maintenance contractor. Steel plates were installed to provide temporary protection while a long-term solution could be implemented.

The Solution

CJGeo performed DCP testing at the site in order to quantify the depth of voids below the pavement adjacent to the sinkholes. The DCP testing showed that in addition to large voids visible from the sinkholes immediately below the pavement, there were large pockets of voids down to 15’ below the surface. 

CJGeo crews then used CJGrout 35NHV61, a hydro insensitive, NSF-certified geotechnical polyurethane to fill all voids and restore stability to the area. The grouting work took five hours onsite to install 3400 pounds of material, with zero disruption to operations.

Speak With An Expert

Facing a similar challenge to this pier sinkhole grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Top