8′ CMP Joint Grouting
The Job
A spec warehouse was planned for a vacant piece of land which had 1700LF of 8′ CMP running through it. The pipe was installed when the site was first prepped, approximately 10 years prior to construction. Because the site was vacant, there was no maintenance. Nearly every joint showed signs of soil infiltration, and there were massive sinkholes along the entire alignment.
The Challenge
To avoid having the replace the entire run of pipe, the joints needed to be sealed. There were 80 pipe joints and 12 pipe to structure joints that were affected.
The Solution
CJGeo mobilized a polyurethane grouting crew to the the site. Over the course of a week onsite, the crew sealed all of the joints. As part of the joint sealing, the voids around the pipe were filled with CJGrout 20SDB geotechnical polyurethane. After the grouting work was done, the site contractor backfilled the sinkholes and washouts with soil.
14′ CMP Repair
The Job
During a real estate transaction, civil engineers walked a 1400LF run of 14′ diameter multiple tunnels running underneath a strip center in Asheville, NC.
A previous inspection had indicated impending section loss of the pipe due to corrosion and had recommended grouting of incidental voids, but no work had been performed at that time.
The pipe, which had up to 20′ of cover, bypasses a large stream and runs under 200LF of building footprint, the main entrance roadway, two out-parcels, and ties into an NCDOT box culvert to discharge.
The Challenge
Significant debris was present in the pipe, and access was exceptionally difficult. Because dewatering was not practical, all work proposed had to be performed underflow.
The Solution
CJGeo proposed polyurethane backgrouting using plural component CJGrout material, specifically CJGrout 35NHV61.
CJGrout 35NHV61 is a hydro insensitive, moderate mobility grout designed for backgrouting in wet environments, and is certified for potable water contact.
Despite a bear wandering into the pipe during repairs, CJGeo crews successfully backgrouted the pipe to address piping and erosion outside of the structure over a period of two weeks. More than 40,000 pounds of CJGrout 35NHV61 were needed to underseal the headwall structure and pipe.
Acid Drainage Grouting
The Job
A 72″ CMP stream diversion pipe under a coal stockpile at a coal mine in West Virginia was experiencing acidic water infiltration. This was causing bypassed stream water to become acidic, so regulators required all of the stream flow to be pumped to treatment ponds and treated. This was expensive, and the flow volume was greater than the design capacity of the treatment system.
The Challenge
Access was quite challenging; the pipe was either 700LF or 1300LF from the nearest access points to the farthest grouting location. Additionally, the infiltrating water was pH 2.
The Solution
CJGeo recommended a hydrophobic prepolymer chemical grout with an extensive performance history in high acidity environments. CJGeo crews sealed a combination of 20 joint leaks and point infiltration sources using the prepolymer chemical grout.
To address acidic water migrating through the stone dust backfill outside of the pipe, CJGeo crews then grouted an in-situ cutoff wall in the trench just downstream of the lowest leak using permeation grouting. The mine operator installed two dewatering wells immediately upstream of the cutoff wall to intercept and pump out the acidic drainage, to keep it isolated from the stream water.
RCP Pipe Sealing
THE JOB
The asphalt parking lot over a 300′ run of 54″ RCP culvert kept collapsing. The public works department of the locality determined that the joints between the 4′ sticks of pipe had not been properly gasketed or seated during installation. The pipe saw the continuous flow of a small stream, entering at an end wall and discharging into a box culvert that crossed a public street. The drop inlet at the downstream junction between the RCP culvert and box culvert also had a failed 18″ RCP culvert feeding it, which had to be repaired multiple times using open trench excavation.
THE CHALLENGE
The municipality was looking for an affordable, proven, and non-disruptive solution. Replacement would have required removal of a structure, and prevented adjacent businesses from using their parking lot during the work. Relining was not practical due to multiple sewers and water utility lines crossing through the pipe. Significant joint offsets would have also made lining difficult.
Extensive voids were identified around the pipe through an inspection. Much of the water flow from the stream was passing under/outside of the pipe, causing the erosion and collapse of the overhead parking lot, and the floor of a storage building built over the pipe. Previous attempts at sealing the joints and filling voids around the pipe with concrete had failed.
THE SOLUTION
Polyurethane grouting fill voids around the pipe and seal the joints between the individual pieces of pipe, end wall and drop inlet. And, chemical grouting to treat a curtain at the upstream end to reduce subsurface flow, and at the downhill end to stabilize a joint in the failed small diameter RCP culvert entering the drop inlet.
CJGeo polyurethane grouting crews placed 50 cubic yards of NCFI high density, hydro insensitive polyurethane and 45 gallons of polyurethane resin chemical grout for an upstream grout curtain over a period of three days to complete the repair. The repairs were all completed without disruption to the adjacent businesses or streets.
15″ RCP point repair
THE JOB
A 6′ deep sinkhole opened up adjacent to a stormwater manhole structure. The manhole was in an easement between two single-family homes and maintained by a municipality. Two misaligned joints were visible from the manhole and were the cause of the sinkhole.
THE CHALLENGE
The two misaligned joints were under up to 8′ of cover. The repair had to seal the two misaligned joints and fill the extensive voids around the pipe that resulted from years of erosion.
THE SOLUTION
Chemical grouting to seal the joints in the pipe. An internal form was used to minimize the entry of chemical grout into the pipe.
CJGeo’s large diameter pipe repair crew installed chemical grout to seal the two misaligned joints and fill voids. The repair was completed in less than two hours, with no service disruptions.
Sand Filter Joint Sealing
The Job
Two underground stormwater sand filters at an apartment community wouldn’t hold water. The structures, which were assembled from 10′ diameter metal pipes needed to pass a water loss test before the property could come off the bond. Previous repairs attempted included the installation of internal joint rings and seals, which did not stop enough flow to pass the water loss tests.
The Challenge
The proposed repair had to accommodate multiple layers of previous repairs. The joints included four different materials–aluminized metal, galvanized metal, neoprene, and polyethylene. The structures were bedded in washed #57 stone and were connected to the stormwater drainage system, so subject to live flow.
The Solution
Sprayed high-density polyurethane/polyurea hybrid to seal the joints internally. In addition, chemical grouting for joints that had been repaired previously using internal bands and polyethylene seals. The chemical grouting repair was designed to minimize the loss of chemical grout into the surrounding stone beds. The previously-installed internal seals and bands were left in place and encapsulated in the joint sealant.
CJGeo’s large diameter pipe repair crew installed chemical grout to seal the leaking joints. Immediately after the sealing was performed, the structures were tested by the municipality. Neither structure leaked any water after CJGeo sealed the joints.
HDPE Joint Repair
The Job
A sinkhole opened up in a drainage easement maintained by an HOA. The cause of the sinkhole was identified as an improperly-seated gasketed joint between two 24″ HDPE stormwater pipes. The sinkhole was large enough that a few minutes of digging with a shovel exposed the entire joint.
The Challenge
Chemical grout injection into the joint from the outside of the pipe to grout the annulus between the ID of the female and OD of the male end of the joint.
The Solution
Single component chemical grout injection successfully sealed the entire circumference of the joint. Visual inspection via injection holes was used to confirm the complete travel of chemical grout around the entire area of the joint.
Sinkhole Repair
The Job
A sinkhole opened up in a drainage easement maintained by an HOA. The cause of the sinkhole was identified as an improperly-seated gasketed joint between two 36″ HDPE stormwater pipes. The pipes were approximately 5 feet below the surface, where there was a 3′ diameter sinkhole.
The Challenge
The pipe had been poorly installed, so it suffered extensive ovaling due to compression of the top during compaction without lateral support.
The Solution
Chemical grout injection into the sinkhole from the surface to fill the sinkhole and seal the pipe joint.
Stormwater Pond Outlet Structure Grouting
THE JOB
The stormwater pond in a neighborhood was not holding water. Geotechnical investigations of the lining material showed that it was adequate. The developer determined that outlet structure grouting may be required to address water loss around the buried structures.
Due to a very tight site, the pond was designed to release water through two structures feeding manifolds. While the pond was equipped with a well and pump to make up for water loss, the pond would still not stay at the level. The inlet and two outlet structures were identified as potential flow paths for water exiting the pond, causing the level to drop.
The township engineer told the developer that if they could not get the pond to hold water, they were going to have to install a liner system, which was very expensive.
THE CHALLENGE
The repair had to be done without impacting water quality, well operations, or creating large disruptions to the residents. Because the exact pathway of water flow around the structures could not be determined, the repair had to address water flows through various seepage paths around the structures.
THE SOLUTION
CJGeo successfully performed chemical grouting to stop water migration through the stone beds on two outlet structures and an inlet structure. The work was completed in a day.
HDPE Pipe Joint Sealing
THE JOB
A large sinkhole opened up in the parking lot of a manufacturing facility. The sinkhole was adjacent to a cast-in-place stormwater drop inlet structure. The structure was 14VF deep and was fed and discharged by 54″ HDPE pipes, requiring HDPE pipe joint sealing.
Facility maintenance personnel had been monitoring the sinkhole and noted that it was growing rapidly. Inspection of the pipe revealed that there were joint failures at the first joint out from the manhole and deterioration of the parging. The parging between the HDPE and concrete pipe had failed to the point of significant amounts of soil washing out during rain events.
THE CHALLENGE
The repair had to be done without disrupting traffic in the parking lot. It also had to provide a long-term solution to the failed pipe joints.
Along with gently filling the voids around the HDPE pipe without deflecting or damaging it, the repair material had to have enough expansive force to thoroughly seal the small cracks and leaks in the parging between the HDPE pipe and concrete structural walls.
THE SOLUTION
Chemical grouting using both prepolymer chemical grouting and plural component polyurethane grouting.
Chemical grouting was chosen for injection through the joints of the HDPE pipe. Prepolymer chemical grouting uses single component polyurethane grouts with exceptionally long gel times. This virtually eliminates localized expansive pressure, which could further damage the HDPE pipe, which was already out of round.
The plural component structural foam was used for void filling the large sinkhole that extended from the bottom of the structure to the surface.
Prepolymer chemical grout was injected through the joints in the HDPE pipe. This successfully sealed the bell and spigot joints without causing further deflection of the pipes.
The large sinkhole void was grouting using plural component polyurethane grouting. A low exotherm structural foam was chosen due to the very large size of the void. Structural foams are important in situations where there are very large voids in areas subject to traffic loading.