Pipe & Culvert Repair Projects

By applying unique solutions to increase the safety and longevity of our environment.

14′ CMP Repair

The Job

During a real estate transaction, civil engineers walked a 1400LF run of 14′ diameter multiplate tunnel running underneath a strip center in Asheville, NC.

A previous inspection had indicated impending section loss of the pipe due to corrosion, and had recommended grouting of incidental voids, but no work had been performed at that time.

The pipe, which had up to 20′ of cover, bypasses a large stream, and runs under 200LF of building footprint, the main entrance roadway, two out-parcels, and ties into an NCDOT box culvert to discharge.

The Challenge

Significant debris were present in the pipe, and access was exceptionally difficult. Because dewatering was not practical, all work proposed had to be performed under flow.

The Solution

CJGeo proposed polyurethane backgrouting using plural component CJGrout material, specifically CJGrout 35NHV61.

CJGrout 35NHV61 is a hydroinsensitive, moderate mobility grout designed for backgrouting in wet environments, and is certified for potable water contact.

Despite a bear wandering into the pipe during repairs, CJGeo crews successfully backgrouted the pipe to address piping and erosion outside of the structure over a period of two weeks. More than 40,000 pounds of CJGrout 35NHV61 were needed to underseal the headwall structure and pipe.

Bulkhead Sinkhole Grouting

The Job

With an annual throughput capacity of 48 million tons, Norfolk Southern’s Pier 6 at Lamberts Point in Norfolk, Virginia is one of the largest coal transloading facilities in the world.  As a round-the-clock facility built around precision logistics, there’s little tolerance for disruption or downtime.

The Challenge

 When two sinkholes opened up at the end of Pier 6 adjacent to the bulkhead, railroad personnel reached out to an onsite maintenance contractor.  Steel plates were installed to provide temporary protection while a long term solution could be implemented.

The Solution

CJGeo performed DCP testing at the site in order to quantify the depth of voids below the pavement adjacent to the sinkholes.  The DCP testing showed that in addition to large voids visible from the sinkholes immediately below the pavement, there were large pockets of voids down to 15’ below the surface. 

CJGeo crews then used CJGrout 35NHV61, a hydroinsensitive, NSF-certified geotechnical polyurethane to fill all voids and restore stability to the area. The grouting work took five hours onsite to install 3400 pounds of material, with zero disruption to operations.

RCP Pipe Sealing

The Job:

The asphalt parking lot over a 300′ run of 54″ RCP culvert kept collapsing. The public works department of locality determined that the joints between the 4′ sticks of pipe had not been properly gasketed or seated during installation. The pipe saw continuous flow of a small stream, entering at an end wall and discharging into a box culvert which crossed a public street. The drop inlet at the downstream junction between the RCP culvert and box culvert also had a failed 18″ RCP culvert feeding it, which had to be repaired multiple times using open trench excavation.

The Challenge:

The municipality was looking for an affordable, proven, and non-disruptive solution. Replacement would have required removal of a structure, and prevented adjacent businesses from using their parking lot during the work. Relining was not practical due to multiple sewer and water utility lines crossing through the pipe. Significant joint offsets would have also made lining difficult.

Extensive voids were identified around the pipe through an inspection. Much of the water flow from the stream was passing under/outside of the pipe, causing the erosion and collapse of the overhead parking lot, and the floor of a storage building built over the pipe. Previous attempts at sealing the joints and filling voids around the pipe with concrete had failed.

CJGeo’s Solution:

Polyurethane grouting to fill voids around the pipe and seal the joints between the individual pieces of pipe, end wall and drop inlet. And, chemical grouting to treat a curtain at the upstream end to reduce subsurface flow, and at the downhill end to stabilize a joint in the failed small diameter RCP culvert entering the drop inlet.

CJGeo polyurethane grouting crews placed 50 cubic yards of NCFI high density, hydroinsensitive polyurethane and 45 gallons of polyurethane resin chemical grout for an upstream grout curtain over a period of three days to complete the repair. The repairs were all completed without disruption to the adjacent businesses or streets.

15″ RCP point repair

The Job:

A 6′ deep sinkhole opened up adjacent to a stormwater manhole structure. The manhole was in an easement between two single family homes, and maintained by a municipality. Two misaligned joints were visible from the manhole, and were the cause of the sinkhole.

The Challenge:

The two misaligned joints were under up to 8′ of cover. The repair had to seal the two misaligned joints and fill the extensive voids around the pipe that resulted from years of erosion.

CJGeo’s Solution:

Chemical grouting to seal the joints in the pipe. An internal form was used to minimize entry of chemical grout into the pipe.

CJGeo large diameter pipe repair crew installed chemical grout to seal the two misaligned joints and fill voids. The repair was completed in less than two hours, with no service disruptions.

Sand Filter Joint Sealing

The Job:

Two underground stormwater sand filters at an apartment community wouldn’t hold water. The structures, which were assembled from 10′ diameter metal pipes needed to pass a water loss test before the property could come off bond. Previous repairs attempted included installation of internal joint rings and seals, which did not stop enough flow to pass the water loss tests.

The Challenge:

The proposed repair had to accommodate multiple layers of previous repairs. The joints included four different materials–aluminized metal, galvanized metal, neoprene, and polyethylene. The structures were bedded in washed #57 stone, and were connected to the stormwater drainage system, so subject to live flow.

CJGeo’s Solution:

Sprayed high density polyurethane/polyurea hybrid to seal the joints internally. In addition, chemical grouting for joints which had been repaired previously using internal bands and polyethylene seals. The chemical grouting repair was designed to minimize loss of chemical grout into the surrounding stone beds. The previously-installed internal seals and bands were left in place and encapsulated in the joint sealant.

CJGeo large diameter pipe repair crew installed chemical grout to seal the leaking joints. Immediately after the sealing was performed, the structures were tested by the municipality. Neither structure leaked any water after CJGeo sealed the joints.

HDPE Joint Repair

The Job:

A sinkhole opened up in a drainage easement maintained by an HOA. The cause of the sinkhole was identified as an improperly-seated gasketed joint between two 24″ HDPE stormwater pipes. The sinkhole was large enough that a few minutes of digging with a shovel exposed the entire joint.

CJGeo’s Solution:

Chemical grout injection into the joint from the outside of the pipe to grout the annulus between the ID of the female and and OD of the male end of the joint.

Single component chemical grout injection successfully sealed the entire circumference of the joint. Visual inspection via injection holes was used to confirm complete travel of chemical grout around entire area of joint.

Sinkhole Repair

The Job:

A sinkhole opened up in a drainage easement maintained by an HOA. The cause of the sinkhole was identified as an improperly-seated gasketed joint between two 36″ HDPE stormwater pipes. The pipes were approximately 5 feet below the surface, where there was a 3′ diameter sinkhole. The pipe had been poorly installed, so it suffered extensive ovaling due to compression of the top during compaction without lateral support.

CJGeo’s Solution:

Chemical grout injectioninto the sinkhole from the surface to fill the sinkhole and seal the pipe joint.

Stormwater Pond Outlet Structure Grouting

The Job:

The stormwater pond in a neighborhood was not holding water. Geotechnical investigations of the lining material showed that it was adequate. The developer determined that outlet structure grouting may be required to address water loss around the buried structures.

Due to a very tight site, the pond was designed to release water through two structures feeding manifolds. While the pond was equipped with a well and pump to make up for water loss, the pond would still not stay at level. The inlet and two outlet structures were identified as potential flow paths for water exiting the pond, causing the level to drop.

The township engineer told the developer that if they could not get the pond to hold water, they were going to have to install a liner system, which was very expensive.

The Challenge:

The repair had to be done without impacting water quality, well operations, or create large disruptions to the residents. Because the exact pathway of water flow around the structures could not be determined, the repair had to address water flows through various seepage paths around the structures.

CJGeo’s Solution:

CJGeo successfully performed chemical grouting to stop water migration through the stone beds on two outlet structures and an inlet structure. The work was completed in a day.

HDPE Pipe Joint Sealing

The Job:

A large sinkhole opened up in the parking lot of a manufacturing facility. The sinkhole was adjacent to a cast-in-place stormwater drop inlet structure. The structure was 14VF deep, and was fed and discharged by 54″ HDPE pipes, requiring HDPE pipe joint sealing.

Facility maintenance personnel had been monitoring the sinkhole and noted that it was growing rapidly. Inspection of the pipe revealed that there were joint failures at the first joint out from the manhole, and deterioration of the parging. The parging between the HDPE and concrete pipe had failed to the point of significant amounts of soil washing out during rain events.

The Challenge:

The repair had to be done without disrupting traffic in the parking lot. It also had to provide a long term solution to the failed pipe joints.

Along with gently filling the voids around the HDPE pipe without deflecting or damaging it, the repair material had to have enough expansive force to thoroughly seal the small cracks and leaks in the parging between the HDPE pipe and concrete structure walls.

CJGeo’s Solution:

Chemical grouting using both prepolymerchemical groutingand plural component polyurethane grouting.

Chemical grouting was chosen for injection through the joints of the HDPE pipe. Prepolymer chemical grouting uses single component polyurethane grouts with exceptionally long gel times. This virtually eliminates localized expansive pressure, which could further damage the HDPE pipe, which was already out of round.

Plural component structural foam was used for void filling the large sinkhole that extended from the bottom of the structure to the surface.

Prepolymer chemical grout was injected through the joints in the HDPE pipe. This successfully sealed the bell and spigot joints without causing further deflection of the pipes.

The large sinkhole void was grouting using plural component polyurethane grouting. A low exotherm structural foam was chosen due to the very large size of the void. Structural foams are important in situations where there are very large voids in areas subject to traffic loading.

Dam Outfall Pipe Seep Grouting

Dam outfall pipe seep grouting, Fairfax, Virginia

Extensive seeps at the joint between the pipe and end wall.


A 36″ RCP outfall pipe for a dam terminated at an end wall.  As part of a dam rehabilitation, small seeping leaks at the end wall/pipe joint needed to be stopped. The leaks had to be stopped so the wall could be resurfaced.

The engineer specified chemical grouting.


Access to the area was quite difficult.  It was more than 150 feet from the closest vehicle access, which was only accessible by 4×4 vehicle down a steep slope.

While unknown during the planning of the chemical grouting repair, what was thought to be 36″ RCP was actually larger diameter RCP that had been lined with steel casing pipe.  An interior poured-in-place concrete liner had been installed afterwards.  


Super low viscosity prepolymer chemical grout was selected.  This was for two reasons:  1) the ability to easily pump more than 150LF from the lay-down area.  and 2) the ability to seek out and stop leaks through very tight cracks in the structures.

Prepolymer chemical grouts are water-reactive, so can be injected into active water flows.  The grout expands when it comes into contact with the water, which seals of the leak.  

After chemical grouting of seeps.


The initial grouting plan was to install the chemical grout through the pipe wall starting beyond the first joint in.  However, because the pipe had been cased, placement had to be done through the end-wall structure only.  Multiple injection holes were drilled through the end wall structure, and the chemical grout was pumped through the end-wall structure.  

Extensive catalyzation was used to first seal the leaks at the end wall and then chase the water flow pathways up along the outside of the pipe.  The job was messy due to the forced proximity of the injection points and the leaks.  But all the leaks were successfully stopped.