Banner

Pipelines & Tunneling

By applying unique solutions to increase the safety and longevity of our environment.

New York Pipe Abandonment

The Job

This New York pipe abandonment project is located in Newburgh, New York. Newburgh is on the Hudson River, about an hour upstream of New York City.

The Challenge

As part of a sanitary sewer upgrade project, 5,399 linear feet of gravity sewer ranging from 6″ to 24″ was specified for grout filling. The highest volume run was a 1,022 linear feet continuous run of 24″ pipe. The longest run was 1,469 linear feet of 18 inch” pipe. Each run did have intermediate manholes, but most manholes were a few hundred feet apart.

The Solution

Pumping cellular grout through a placement pipe.

Traditionally, the customer would have dumped flowable fill in the manholes in an attempt to completely fill the lines by gravity. However, many of the manholes were off road, and some of them were hundreds of feet apart. This makes gravity discharge of flowable fill into manholes unreliable for ensuring complete fill.

CJGeo proposed performing the abandonment grouting using 30lb/cuft CJFill-Ultra Lightweight cellular grout. Since cellular grout will flow much further at nominal pressures, CJGeo was able to place through multiple manholes at once, which significantly reduced access requirements.

Due to the relatively low volume on this project, continuous wet batch was the best method for generating the cellular grout for this project. Wet batch uses slurry delivered by ready mix truck, with Aerlite-iX added downstream of CJGeo’s slurry pump.

Speak With An Expert

Facing a similar challenge to this New York pipe abandonment project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Indoor Pool Abandonment

The Job

This indoor pool abandonment project is located in West Virginia, at Concord University. A swimming pool built in the 1970’s was no longer in use, and had sat empty for years. As part of a renovation, the pool had to be filled in order to pour a slab and prepare the room for other uses.

The Challenge

Like many buildings in the mountains, the original site sloped. A retaining/basement wall passes through the building close to the deep end of the pool, whose sloped floor roughly follows the original grade of the site. The structural engineer had to concerns about backfilling the pool:

  • increasing lateral loads on the adjacent basement wall if a heavy, granular material was used for the fill material
  • causing settlement by filling the pool with material heavier than the water it was designed to hold, and which the underlying soils had seen for years

The original bid had two options: filling the pool entirely with 57 stone, or filling it entirely with 2lb/cuft EPS blocks.

The Solution

Geofoam blocks would have addressed both the axial and lateral load challenges. However, EPS would take a few weeks to import, cut, and place. 57 stone would have been least expensive, but increased lateral and axial loads beyond those of water.

CJGeo proposed a value engineered alternative to fill the bottom 70% of the pool with 25lb/cuft CJFill-Ultra Lightweight low density cellular fill (LDCF), topped with 57 stone, and then a new floor slab. The structural engineer, architect and owner all accepted the proposed change. The general contractor was excited to save weeks out of their schedule.

A single CJGeo dry batch cellular concrete crew performed the work over two days. The first lift, of 400 cubic yards took about two hours to place, and was roughly 6 feet deep. The second lift, around 350 cubic yards, also took about two hours to place. The day after CJGeo wrapped up, the general contractor was able to start placing the 57 stone on top of the CJFill-Ultra Lightweight fill.

Speak With An Expert

Facing a similar challenge to this indoor pool abandonment project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

WWTP Tunnel Curtain Grouting

The Job

This WWTP tunnel curtain grouting project is located in Syracuse, New York. It is located immediately adjacent to the southern shore of Onandaga Lake in an area that is historical infill.

The Challenge

CJGeo performing curtain grouting.

A 700 foot long, 17 feet deep utility tunnel runs through the treatment plant site. Inside are numerous site utilities, including large diameter waste lines, along with many smaller diameter chemical and treatment lines.

Over time, the tunnel walls have developed leaks, accentuated by the highly variable fill material outside of the structure. When it rains, water enters the tunnel, which has roughly three feet of cover.

The Solution

As part of a large project at the plant, plans call for curtain grouting the length of the tunnel with polyurethane grout. Curtain grouting can be done two ways:

  • through the structure walls, using holes drilled through the structure, or
  • from the surface, using tubing inserted down along the exterior face of the wall

In this case, the interior walls of the tunnel were not uniformly accessible due to the number of utilities mounted on the wall. CJGeo designed a grouting program using the sacrificial tubes from the surface method. The advantage of this method in this case was that the density of utilities on the inside face of the structure didn’t affect the ability to uniformly introduce grout along the outside surface of the structure.

A CJGeo chemical grouting crew placed nearly 1300 gallons of single component polyurethane resin on this WWTP curtain grouting project. The work took about three weeks start to finish. The general contractor had removed the backfill and installed a new waterproofing membrane over the tunnel lid and extending down the walls about one foot on each side.

Speak With An Expert

Facing a similar challenge to this WWTP tunnel curtain grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Penstock Void Grouting

The Job

This penstock void grouting project is located near Hopkinton, New Hampshire. It is located at a small hydroelectric power plant that has been in service for more than 40 years.

The Challenge

CJGeo worker drilling holes through a metal pipe as part of a penstock void filling project.

This hydro-electric plant’s two original parallel penstocks are wooden. Sometime after original construction, 6.5′ ID steel liners were installed inside the original wooden penstocks.

Typically, when pipes are slip lined, the annular space between the ID of the original pipe and OD of the liner is grouted. However, in this case, the annulus was left open.

The steel pipes are nearing the end of their service life, and require rehabilitation. Plans called for installing a shotcrete liner. Specs called for a cementitious grout with 30 minute working time placement behind the steel pipes prior to spraying shotcrete.

The Solution

The marine contractor performing the shotcrete lining reached out to CJGeo about performing the annular space grouting with cementitious grout. CJGeo’s engineering & operations teams evaluated the project documents and site conditions and determined that there was a very high risk of grout escaping the annulus and making it to the adjacent waterway. This was due to the unknown condition of the original wood penstock, minimal cover over the pipes, and unknown, but potentially open graded backfill material.

CJGeo proposed an alternative, using CJGrout 22SHV geotechnical polyurethane grout to perform the penstock void grouting. CJGeo’s alternative material proposal was accompanied by load calculations from our geotechnical professional engineer confirming that despite strength significantly less than the specification requirement, that CJGrout 22SHV provided multiple factors of safety beyond the actual loads the annulus would see.

Upon approval by the owner’s consulting engineering team, CJGeo mobilized a confined space polyurethane grouting crew to the site. Over two days, the crew successfully grouted the annular space between the steel and wood penstocks. The following day, the contractor began installing reinforcement and prepping the steel pipe surface for shotcrete application.

Speak With An Expert

Facing a similar challenge to this penstock void grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Flooded Shaft Grouting

The Job

This flooded shaft grouting project by CJGeo is located outside of Washington, DC at a data center site. As the 60″ microtunneling machine was entering the retrieval shaft, a piece broke off of the secant pile wall, and tore the seal. This resulted in water infiltration of around 600 gallons per minute into the shaft. The machine was recovered, but the shaft filled with nearly 15 feet of water in a matter of hours.

The casing crown has roughly 20 feet of cover, and is about 15 feet below the ground water level. The ground in the area is a mix of clays and sands. The tunnel is primarily in the underlying fractured rock. For the last 30 feet of tunnel before the secant pile receiving shaft, the tunnel is in a mix of weathered rock and sandy clay.

The Challenge

Having used CJGeo in the past to address high volume leaks into shafts, the tunneling contractor reached out to CJGeo for this flood shaft grouting problem. The primary constraints were:

  • time – the project was already behind schedule
  • water management – any groundwater was considered contaminated

Typically, grouting a leak such as this would be as simple as throwing bigger pumps into the shaft, dewatering it, then grouting the leak from inside the shaft. However, because of the costs associated with treating potentially very high volumes of water at this site, this wasn’t an option.

The Solution

CJGeo proposed, and then successfully performed, a two stage grouting program. Primary grouting was done using CJGrout 35NHV61 geotechnical polyurethane on a Saturday. The CJGrout 35NHV61 was installed immediately behind the secant pile wall through three holes drilled from the surface to intercept the over cut. Grout injection through these holes resulted in grout return to the retrieval shaft. Off gassing also showed up at the launch shaft. This indicates that the rapid inflow of water during the flooding event had washed out some of the mud in the over cut.

After completion of the plural component primary seal injection, CJGeo dye tested the primary grouting program. This was done through Tube-A-Manchette grout pipes installed using sonic drilling along the tunnel alignment, further out from the shaft. No dyed water returned to either shaft.

The following day (Sunday), CJGeo performed permeation grouting using colloidal silica through the TAM grouting tubes. This secondary grouting program served two purposes:

  • seal any rock fractures that weren’t penetrable by the higher viscosity plural component polyurethane grout
  • replace any overcut mud washed out during the initial flooding event

Speak With An Expert

Facing a similar challenge to this flooded shaft grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

North Carolina Annular Grouting

The Job

This North Carolina annular grouting project is located in Havelock, North Carolina. Havelock is home to Marine Corps Air Station Cherry Point. US 70 passes through Havelock, providing a critical link between New Bern and the coastal beaches of North Carolina.

The Challenge

As part of North Carolina DOT work to upgrade the capacity and increase safety of US 70, a number of wet utilities were upgraded and relocated. This required a number of jack and bore crossings of the existing roadway to avoid disrupting traffic. NCDOT requires annular grouting for jack and bore crossings of wet utilities, for anything with less than a 100 year design life.

The Solution

This project had two crossings needing annular space grouting. One was 120 linear feet of 42″ steel casing with an 18″ ductile iron pipe water line. The second was 86 linear feet of 42″ steel casing with an 18″ ductile iron water line.

A CJGeo cellular grouting crew successfully filled each of the two casings with CJFill-Ultra Lightweight cellular concrete in a few hours in a single day. Carrier pipe buoyancy was not a concern due the low density of the grout.

Speak With An Expert

Facing a similar challenge to this North Carolina annular grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Electric Bore Annular Space Grouting

The Job

This electric bore annular space grouting project is located in Norfolk, Virginia. As part of significant work at the Port of Virginia’s Norfolk International Terminal, an electrical contractor installed seven jack & bore crossings of various roadways and railroad lines within the port.

The Challenge

There are seven bores, ranging from 85 feet to 362 feet. Each bore is 36″ steel casing, with eight, eight inch conduits. Most conduits are for electrical lines, some are reserve, and some are for communication and data.

The designer’s specification call for annular grouting of all the conduits, with a minimum 1000psi grout. There was no thermal conductivity requirement.

The Solution

CJGeo proposed a 60lb/cuft CJFill-Standard cellular grout in order to meet the 1000psi requirement. Buoyancy control was achieved through water filling of the conduits, along with a conduit & casing spacer design which presumed some buoyancy.

The customer filled each of the conduits with water prior to grouting. Due to the relatively low volume of grout per bore (ranging between 16 & 57 cubic yards), CJGeo used a local ready mix supplier for paste, and the wet batch generation method. CJGeo successfully performed the electric bore annular space grouting work over two days.

Speak With An Expert

Facing a similar challenge to this electric bore annular space grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Railroad Bore Annular Space Grouting

The Job

This railroad bore annular space grouting project is located in Winchester, Virginia. As part of a new development, three parallel stormwater pipes were bored under a CSX right of way.

The Challenge

The railroad requirements include annular space grouting. The three casings (80 feet long each), are 48″ by 0.725 wall thickness steel. The carrier pipes are 30″ N-12 pipe, with a 35.50″ outside diameter.

This annulus requires about 16 cubic yards of grout per bore. One of the challenges of double wall HDPE drainage pipe is that it is exceptionally light. This can make uplift management during grouting particularly challenging.

The Solution

In order to manage buoyancy during the annular grouting, the boring contractor installed longitudinal blocking on each of the carrier pipes during installation. To reduce the uplift by six times compared to flowable fill, CJGeo proposed a 30lb/cuft cellular grout for the annular grouting.

Between the blocking and the very low density CJFill-Ultra Lightweight cellular grout, single lift grouting was possible without damaging the new carrier pipes. Single lift grouting eliminates the risk of trapped air pockets or partial fills associated with multi-lift grouting.

Due to the relatively low volume, and to reduce heat of hydration, wet batch generation using slurry from a local ready mix plant was used. Cellular concrete is also referred to as low density cementitious material.

Speak With An Expert

Facing a similar challenge to this railroad bore annular space grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

New Jersey permeation grouting

The Job

This New Jersey permeation grouting project is located in Elizabeth, New Jersey. It is at a large wastewater treatment plant owned by the JMEUC.

The Challenge

During installation of a new building on site, a large excavation was required. Primarily comprised of H piles and wood lagging, it crossed a 24 foot wide influent conduit. The influent conduit is a double barrel box structure, cast in place on 12 inch thick bed of open graded stone.

During test pitting to the bottom of footing elevation, the test pit appeared to be tidally influenced. The site is immediately adjacent to a creek that feeds into the Elizabeth River. At high tide, and due to the permeability of the stone layer, inflow into the test pit was not controllable, and was higher than the footing elevation.

Specific challenges here included:

  • potentially high velocity water flows due to tidal influence
  • 12 foot minimum spacing of grout holes due to structure wall locations
  • potential fouling of bedding stone with fines

The Solution

The general contractor reached out to CJGeo about grouting the stone bed. The structure is 24 feet wide, but only has a single, eight inch wall down the middle.

CJGeo proposed that a coring contractor drill a two inch core down through the center and side walls from the surface. This gave us three access points to place grout from at each location.

Due to the large grout hole spacing, CJGeo selected acrylic grout. Acrylics are excellent for this type of application because they are exceptionally low viscosity (pump & flow pretty much like water).

A single CJGeo chemical grouting crew performed the acrylic grouting over two days onsite. Afterwards, infiltration into the excavation was down to a submersible garden hose pump. The use of acrylic grout ensured that:

  • coverage was uniform despite the large distance between placement points
  • any fines fouling the bedding stone were uniformly bound together, immobilized & made impermeable

Speak With An Expert

Facing a similar challenge to this New Jersey permeation grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Outfall Leak Grouting

The Job

This outfall leak grouting project is located near Emporia, Virginia. The work is located at two different stormwater ponds at an industrial scale solar facility. The facility is owned by Dominion Energy.

The Challenge

This facility has a mix of both dry and wet ponds. At two wet ponds, leaks developed along the outfall pipes, which prevented them from holding water long term. During a precipitation event, water would build up, but then afterwards, slowly drain out by piping alongside the outfall pipes. In order to turn over the facility to the owner, the contractor needed to address the leaks to ensure the ponds functioned as designed.

The Solution

Due to the small diameter of the pipes, they weren’t accessible from the inside. CJGeo proposed grouting along the pipe alignments using single component expanding chemical grout. The pipes are reinforced concrete.

To facilitate this, CJGeo drove sacrificial injection tubes along both sides of each of the two pipes. No grout returned to the inside of the pipes, which confirms that the root cause of the problem was poor control of the backfill, as opposed to problems with the pipe joints. When bedding isn’t properly installed, and backfill properly compacted, water can flow outside of stormwater pipes, which is what was happening here.

Speak With An Expert

Facing a similar challenge to this outfall leak grouting project? Give us a shout or shoot us a text. Click the state marker for the location of your project for contact info for the appropriate rep.

Top